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Fast Evaluation of Modal Coupling Coefficients
of Waveguide Step Discontinuities

Paolo Arcioni. Member, IEEE

Abstract— This letter presents a fast method for the deter-
mination of a large number of coupling coefficients of a step
discontinuity between a rectangular/circular waveguide and a
smaller one of arbitrary shape. The mode spectrum of the small
waveguide is calculated by a fast algorithm—presented some
years ago—and the coupling coefficients are obtained at almost no
extra cost by post-processing some of the matrices already used
for finding the modes. Tens of modes and hundreds of coefficients
are calculated in a few seconds on an ordinary workstation.

1. INTRODUCTION

ANY MODERN simulation tools for the design of

complicated waveguide junctions, such as filters and
diplexers, are based on the modeling of the whole circuit as a
cascade of step discontinuities between pairs of waveguides.
Each discontinuity is characterized by a generalized scattering
or admittance matrix [1]-[3], whose computation requires to
calculate a large number of coupling integrals between the
modal fields of the two waveguides. This is no problem when
the mode spectrum of both waveguides is known analytically,
e.g., when considering junctions between rectangular and/or
circular waveguides. In many cases, however, it is necessary to
study the junction between a rectangular or circular waveguide
2 and a smaller waveguide S of arbitrary cross section (see
Fig. 1). Here, two problems arise: 1) the computation of the
mode spectrum of S and 2) the evaluation of a large number
of modal fields of S in many points of its cross section to
compute the coupling integrals numerically. Among the many
known methods to find the mode spectrum of an arbitrarily
shaped waveguide, the algorithm described in [4] may help in
solving both problems. In fact, this method not only allows
one to compute a large number of modes in a short time, but
it also has the peculiarity of defining the modes of the small
waveguide in an enlarged domain of rectangular or circular
shape. thus reproducing the geometry of Fig. 1. This fact turns
out to be very convenient, since the coupling coefficients can
be calculated straightforwardly—without cumbersome field
integrations—{rom the entries of some of the matrices already
used in the mode determination or of other matrices that are
easily computed. This possibility, not considered in [4], is
described in this letter.

II. EXPRESSIONS OF THE COUPLING COEFFICIENTS

Denoting by é:;’) (6:;’,’ ) the normalized electric modal vector
of the pth TE (TM) mode in €2, and by e, (€,) the normalized
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Fig. 1. The geometry of the problem. The large waveguide €2 can be either
rectangular or circular.

-
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electric modal vector of the gth TE (TM) mode in S, the
coupling coefficients to be evaluated are
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The method described in [4] yields the cutoff wavenumber
and the electric field for the first TE and TM modes of S by
solving two linear matrix eigenvalue problems. Denoted by s,
the cutoff wavenumber of the gth TE mode-—resulting from
the gth eigenvalue of (11) in [4}]—and by {{b/,}; {al,}} the
corresponding eigenvector, partitioned as described in [4]. the
modal vector €, is given by
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where 7 is the position vector; o is the boundary of S; § = 3(¢)
denotes a generic point on ¢ (¢ represents an abscissa taken
on o); f(ﬁ) is the unit vector tangent to o; Vg Is the two-
dimensional (2-D) nabla operator; {w,} is a set of N’ basis

functions defined on o: g and G are the scalar and dyadic
Green functions defined in [4, eqgs. (2)-(5)]; &7, is the cutoff
wavenumber of the mth TE mode in 2. The first term on the
rhs. of (1) represents a modal expansion involving the first
M’ TE modes of Q. Equation (1) is obtained by imposing
the normalizing condition on S to the field expressed by
(13) in [4]; it assumes that the eigenvectors are normalized
as specified in [5, eqgs. (A2) and (A3)], in the context of an
equivalent eigenvalue problem.
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The modal field of the gth TM mode is calculated as

é'” _ vT¢q
q w!!
q

2)

where nfl’ is its the cutoff wavenumber—deduced from the gth
eigenvalue of eq. (15) in [4]—and ¢, is the corresponding
scalar potential. Function ¢, in turn, can be obtained from [4,
eq. (19)], after normalization on S

MII a,/
Pa(F) = 5y | > s em(7)
m=1 ™

+ Z b / (7, 3)wn(4) db 3)

where ¢,,, is the mth normalized eigenfunction of the homo-
geneous Helmoltz equation in {2 with Dirichlet’s boundary
conditions, k! is the corresponding eigenvalue, {a,, } are the
entries of the gth eigenvector of eq. (15) in [4], and {b]/} are
obtained from the a!/, by eq. (18) in [4]. Also in (3) the first
term on the r.h.s. represents a modal expansion involving the
first M” p-eigenfunctions. The normalizing condition of {a/,
is deduced in [6], using a somewhat different notatlon With
the symbols used here this condition reads S"M_ |/ |2 =
K/HQ.

qTo evaluate the coupling coefficients let us consider the

eigenfunction expansions of g [7] and E’St [4]
(101("' ‘Pz
9= Z k//Z
- . ENF)ENF
Gst — Z L( ]2{21( ) (4)

lirom (1) and (2), substituting (3) and (4) and recalling that
&' = —Vrp; [k, the following expressions are obtained
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Moreover, it is observed that, as pointed out in [4], (1) and
(3)—and consequently (5) and (6)—give rise to field values
that are zero when 7 is taken in the region €2 — S. Therefore,
the coupling coefficients can be evaluated carrying out the
integration in the whole domain (), where it is possible to take
advantage from the orthonormality of vectors £, and E” It
is finally obtained

TE, TE _ 51
Ipq - / p’
Q
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Fig. 2. (a) The “triseptum” circular waveguide and (b) the cross—shaped
waveguide considered in the examples. Dimensions: D = 24 mm,
t1 =t = t3 =2 mm, di = 1.64 mm, do = 1.74 mm, dg = 2.72
mm, wp = wy = 2 mm, Ly = 153 mm, L, = 17.3 mm.
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and, of course, it is assumed that p < M’ (TE modes) or
p < M" (TM modes). Equation (10) shows that TE modes
of the large waveguide never couple with TM modes of the
small one, independently of its shape, a result already known
in the literature [8].

It is pointed out that coefficients R,, and R;lp are the
entries of matrices R and R’ that are used for the mode cal-
culation [see [4], egs. (12d), (16c)]. Therefore, only quantities
R, ,—which involve simple line integrals—must be computed,
all other quantities being already known once the modes of the
small waveguide have been determined.

III. NUMERICAL RESULTS

The algorithm has been validated using as benchmarks the
step discontinuities between circular/rectangular waveguides,
since in these cases the exact values of the coupling co-
efficients are easily determined. Here, only the results for
a junction between two offset rectangular waveguides are
teported (dimensions of 2: a % a/2; dimensions of 5: 3a/5 x
a/4; axes offset: a/20 along x and 3a/40 along y). Running
on a SUN SparcStation 10, the code computed in only 11 s the
first 10 modes of S and the 1700 coefficients (7)-(9) relative
to the first 100 TE and 100 TM modes of 2 (10 s were spent
for the numerical determination of the mode spectrum of S
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TABLE I

COUPLING COEFFICIENTS AND ABSOLUTE ERRORS (IN PARENTHESIS)
FOR THE JUNCTION BETWEEN TWO RECTANGULAR WAVEGUIDES

TEw

T Eao

TEn

TE)o
TEa
TEzo
TEy,
T M3
TEn

0.63255 (5.3107°)
0.00012 (1.2107%)
~0.15172(3.7107%)
—0.16370 (1.7107%)
0.06190 (4.0107°)
—0.26393 (1.1107*)

0.04833 (1.7107*)
0.00018 (1.8107%)
0.49246 (3.4107*)
—~0.01232(2.2107%)
—0.20140 (3.0107%)
—0.25738(8.1107%)

0.00086 (8.6107™%)
—0.58468 (1.2107°)
0.00153 (1.5107%)
0.09893 (5.7107%)
0.28103 (8.5107%)
0.00182 (1.8107%)
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TABLE IlII

CouPLING COEFFICIENTS AND CUTOFE WAVENUMBERS
(N [MM—1]) OF THE WAVEGUIDE OF FIG. 2(b)

TEno.1k.=0.18767

TE no.2 k.=0.21143

TE no. 3 6,=0.21309

0.32817 (T'Ewic)
—0.37234 (TM115)
—0.08490 (T E31c)

0.16012 (T E12c)

0.17080 (T M3y5)

—0.21687 (T E21,)
—0.04556 (T'Eo1)
—0.35523 (T Mas.)
0.01688 (T Eu1,)
—0.20726 (T Ezs)

0.31892 (T E11,)
0.36469 (T M11.)
0.06829 (T'Es1,)
0.20216 (T E12s)
0.14110 (T Myy,)

T Mo
T Eso
TEs,
T M3y

0.12694 (5.8107°)
—0.32710 (4.2107%)
0.06176 (9.8107°)
0.08468 (8.9107°)

0.12472(8.9107%)
—0.02505 (1.8 107%)
—0.20126 (1.7107%)
0.08271(1.610*)

—0.02402 (1.2107%)
—0.04986 (1.110™1)
—0.28166 (5.5107%)

0.03408 (1.2107*),

TABLE II
CoUPLING COEFFICIENTS AND CUTOFF WAVENUMBERS
(IN [MM~1]) OF THE WAVEGUIDE OF FIG. 2(a)

TE no.2|TM no.1| TE no.4
0.155937 | 0.209259| 0.24689%0

TE no.4
0.248848

TFE na.1
0.150059

mode
K¢
TEns
TE1.
T Mo
TFEs,
TEz1c

—0.05331
0.05855
0.06526
0.90819

—0.08028

0.03338
0.02029
—0.00837
—0.08068
—0.94792

0.69574
—0.66897
0.07871
0.00304
0.00067

0.68396 ==
0.71139
—0.000056
0.00063
—0.01091

—0.94866

and 1 s for the coupling coefficients). The statistical analysis of
the accuracy of the computed coefficients shows that the mean
value of the magnitude of the absolute error is 8.5 x 1074, that
its r.m.s. value is 2.3 x 1073, and that the standard deviation is
2.1x1073. As expected, the accuracy decreases when the order
of the modes of the two waveguides increases (the maximum
absolute error is 0.03 for the coupling between the TE3; mode
of S and the TEg; mode of Q). Far better accuracies are
obtained for lower-order modes, as shown by the results of
Table I, which reports the computed coefficients for the first
three modes of S and the first 10 modes of Q (figures in
parentheses are the magnitude of the absolute error). Similar
results have been obtained in the other validation cases. Other
results are given to prove the efficiency of the algorithm: they
concern the two geometries of Fig. 2, which represent the
basic discontinuities for modeling circular waveguide dual-
mode filters. The dimensions reported in the figure caption are
taken from the actual design of a filter operating at about 12
GHz [9]. Running on the said workstation, the code found all
the modes of the waveguides of Fig. 2 with cutoff frequencies
up to 50 GHz and computed coupling coefficients with all the
modes of ) having cutoff frequencies up to 100 GHz, i.e., 169
TE and 144 TM modes. The computing time to evaluate the
mode spectrum of the “triseptum” circular waveguide of Fig.
2(a) was 14 s (45 TE and 31 TM modes were found), and the
additional time to compute all the 18 549 coupling coefficients

was 7 s. Table II reports the first few coupling coefficients: the
modes of S are ordered according to their cutoff wavenumbers,

and degenerate modes of € are labeled with a “c” (cosine) or

“s” (sine) index. Thanks to the symmetry, the code ran even
faster in the case of Fig. 2(b). The mode spectrum, computed
in 9 s, consists of 9 TE modes. The additional time to compute
the coupling coefficients was only 1 s (in this case only 703
coefficients were actually computed, since the coefficients that
are zero by symmetry have been automatically skipped): Table
III shows the first nonzero coefficients of the first three modes.

1V. CONCLUSION

A fast and accurate algorithm has been presented for the de-
termination of the coupling coefficients between a rectangular
or circular waveguide connected to a smaller one of arbitrary
shape. The reported examples show that the accuracy is very
good, and that the computing time is moderate, even when
dealing with a large number of modes in the two waveguides.
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