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Fast Evaluation of Modal Coupling Coefficients

of Waveguide Step Discontinuities
Paolo Arcioni.

Abstract— This letter presents a fast method for the deter-

mination of a large number of coupling coefficients of a step
discontinuity between a rectangularlcircular waveguide and a
smaller oue of arbitrary shape. The mode spectrum of the small
waveguide is calculated by a fast algorithm—presented some
years ago—and the coupling coefficients are obtained at almost no
extra cost by post-processing some of the matrices already used
for finding the modes. Tens of modes and hundreds of coefficients

are calcuhted in a few seconds on an ordinary workstation.

I. INTRODUCTION

M ANY MODERN simulation tools for the design of

complicated waveguide junctions, such as filters and

diplexers, are based on the modeling of the whole circuit as a

cascade of step discontinuities between pairs of waveguides.

Each discontinuity is characterized by a generalized scattering

or admittance matrix [l ]–[3], whose computation requires to

calculate a large number of coupling integrals between the

modal fields of the two waveguides. This is no problem when

the mode spectrum of both waveguides is known analytically,

e.g., when considering junctions between rectangular andlor

circular waveguides. In many cases, however, it is necessary to

study the junction between a rectangular or circular waveguide

Q and a smaller waveguide S of arbitrary cross section (see

Fig. 1). Here, two problems arise: 1) the computation of the

mode spectrum of S and 2) the evaluation of a large number

of modal fields of S in many points of its cross section to

compute the coupling integrals numerically. Among the many

known methods to find the mode spectrum of an arbitrarily

shaped waveguide, the algorithm described in [4] may help in

solving both problems. In fact, this method not only allows

one to compute a large number of modes in a short time, but

it also has the peculiarity of defining the modes of the small

waveguide in an enlarged domain of rectangular or circular

shape, thus reproducing the geometry of Fig. 1. This fact turns

out to be very convenient, since the coupling coefficients can

be calculated straightforwardly-without cumbersome field
integrations—from the entries of some of the matrices already
used in the mode determination or of other matrices that are

easily computed. This possibility, not considered in [4], is

described in this letter.

II. EXPRESSIONSOF THE COUPLING COEFFICIENTS

Denoting by ~~ (~~ ) the normalized electric modal vector

of the pth TE (TM) mode in 0, and by Zq (2{) the normalized
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The geometry of the problem. The large waveguide O can be either

rectangular or circular

electric modal vector of the qth TE (TM) mode in S, the

coupling coefficients to be evaluated are

The method described in [4] yields the cutoff wavenumber

and the electric field for the first TE and TM modes of S by

solving two linear matrix eigenvalue problems. Denoted by K~

the cutoff wavenumber of the qth TE mode—resulting from

the qth eigenvalue of (11) in [4]—and by {{b:}; {a~ } } the

corresponding eigenvector, partitioned as described in [4], the

modal vector ?q is given by

where ?’is the position vector; o is the boundary of S; F’= ii’(t)

denotes a generic point on o ((? represents an abscissa taken
on u); ~(~) is the unit vector tangent to u; VT is the two-

dimensional (2-D) nabla operator; {w. } is a set of IV’ basis

functions defined on ~; g and G,t are the scalar and dyadic

Green functions defined in [4, eqs. (2)–(5)]; k~, is the cutoff

wavenumber of the rn,th TE mode in Q. The first term on the

r.h.s. of (1) represents a modal expansion involving the first

Ill’ TE modes of !2. Equation (1) is obtained by imposing

the normalizing condition on S to the field expressed by

( 13) in [4]; it assumes that the eigenvectors are normalized

as specified in [5, eqs. (A2) and (A3)], in the context of an

equivalent eigenvalue problem.
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The modal field of the qth TM mode is calculated as

(2)

where K; is its the cutoff wavenumber—deduced from the qth

eigenvalue of eq. (15) in [4]—and q5~ is the corresponding

scalar potential. Function #~, in turn, can be obtained from [4,

eq. (19)], after normalization on S

,,

+~/);/ 1g(F, F)wn(l) d-t (3)
n=l u

where pm is the mth normalized eigenfunction of the homo-

geneous Helmoltz equation in Q with Dirichlet’s boundary

conditions, k: is the corresponding eigenvalue, {a;} are the

entries of the @h eigenvector of eq. (15) in [4], and {b;} are

obtained from the a~ by eq. (18) in [4]. Also in (3) the first

term on the r.h.s. represents a modal expansion involving the

first J/f” p-eigenfunctions. The normalizing condition of {a~ }

is deduced in [6], using a somewhat different notation. With

the symbols used here this condition reads ~~~1 la; 12 =

J’&.

To evaluate the coupling coefficients let us consider the
w

eigenfunction expansions of g [7] and G,t

m %%(F)W(F)~=~
~;z

i=l

m ~(F)&(F)
& = ~

k:z “i=l

From (1) and (2), substituting (3) and (4)

[4]

(4)

and recalling that

~ = –VT~i/k~, the following expressions are obtained

(5)

a“ +
$Eg. (6)

m

Moreover, it is observed that, as pointed out in [4], (1) and

(3)—and consequently (5) and (6)—give rise to field values

that are zero when F’ is taken in the region Q – S, Therefore,

the coupling coefficients can be evaluated carrying out the

integration in the whole domain Q, where it is possible to take

advantage from the orthonormality of vectors ~~ and ~~. It

is finally obtained
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Fig. 2. (a) The “triseptum” circular

waveguide considered in the examples. ‘Dimensions:” D = 24 n%,

tl = tZ = ts = 2 mm, c[l = 1.64 mm, dz = 1.74 mm, ds = 2.72
mm, wh = wv = 2 mm, Lh = 15.3 mm, Lu = ].7.3 mm.

where

and, of course, it is assumed that p < M!
p < &f” (TM modes). Equation (10) shows

of the large waveguide never couple with TM modes of the

small one, independently of its shape, a result already known

in the literature [8].

It is pointed out that coefficients Rnl, and Rip are the

entries of matrices R and R’ that are used for the mode cal-

culation [see [4], eqs. (12d), ( 16c)]. Therefore, only quantities

R“ —which involve simple line integrals–-must be computed,

al~other quantities being already known once the modes of the

small waveguide have been determined.

(lo)

(11)

(12)

(13)

(TE modes) or

that TE modes

III. NUMERICAL FWsuurs

The algorithm has been validated using as benchmarks the

step discontinuities between circukdrectangular waveguides,

since in these cases the exact values of the coupling co-

efficients are easily determined. Here, only the results for

a junction between two offset rectangular waveguides are
reported (dimensions of fl: a x a/2; dimensions of 5: 3a/5 x

a/4; axes offset: a/20 along z and 3a/4Cl along y). Running

on a SUN SparcStation 10, the code computed in only 11 s the

first 10 modes of S and the 1700 coefficients (7)–(9) relative

to the first 100 TE and II00 TM modes of Q (10 s were spent

for the numerical determination of the mode spectrum of S
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TABLE I

COUPLING COEFFICIENTS AND ABSOLOTE ERRORS (rN PARENTHESIS)

FOR THE JUNCTION BETWEEN Two RECTANGULAR WAVEGUCUES

G
TEOI

TE2(

TE1 I

TMI

TE21

TM2

TE3(

TE3,

TM3

TEIO TE20

0.63255 (5.3 10-$) 0.04833 (1.7 10-4)

0.00012(1.210-4) 0.00018(1.810-4)

-0.15172 (3.7 10-4) 0.49246 (3.4 10-4)

-0.16370(1.710-4) -0.01232 (2.2 10-4)

0.06190 (4.0 10-5) –0.20140 (3.0 10-5)

-0.26393 (1.1 10-4) –0.25738 (801 10-5)

0.12694 (5.8 10-5) 0.12472 (8.9 10-4)

-0.32710 (4.2 10-5) –0.02505 (1.8 10–5)

0.06176 (9.8 10-5) -0.20126 (1.7 10-4)

0.08468 (8.9 10-5) 0.08271 (1.6 10-4)

TEo,

0.00086 (8.6 10-’)

-0.58468 (1.2 10-3)

0.00153 (1.5 10-3)

0.09893 (5.7 10-4)

0,28103 (8.5 10-5)

0.00182(1.810-3)

-0.02402 (1.2 10-3)

-0.04986 (1.1 10-4)

-0.28166 (5.5 10-4)

0.03408 (1.2 10-4)1

TABLE II

COUPLING COEFFICIENTS AND CUTOFF WAVENUMBERS

‘“”” ‘m““-1]) OF THE WAVEGUIDE OF FIG. 2(a)

-L
7’J%Is 0.69574

TE]]c –0.66897

TMOI 0.07871

TE21* 0.00304

TE21C 0.00067

TE no.2

0.155937

0.68396

0.71139

–0.00005

0.00063

–0.01091

TM no. 1

0.209259

————
————

–0.94866

————

TE no.4

0.246890

–0.05331

0.05855

0.06526

0.90819

–0.08028

TE no. 4

0.248848

0.03338

0.02029

–0.00837

–0.08068

–0.94792

and 1 s for the coupling coefficients). The statistical analysis of

the accuracy of the computed coefficients shows that the mean

value of the magnitude of the absolute error is 8.5 x 10–4, that

its r.m. s. value is 2.3 x 10 – 3, and that the standard deviation is

2.1 x 10–3. As expected, the accuracy decreases when the order

of the modes of the two waveguides increases (the maximum

absolute error is 0.03 for the coupling between the TE31 mode

of S and the TEFjl mode of Q). Far better accuracies are

obtained for lower-order modes, as shown by the results of

Table I, which reports the computed coefficients for the first

three modes of S and the first 10 modes of 0 (figures in

parentheses are the magnitude of the absolute error). Similar

results have been obtained in the other validation cases. Other

results are given to prove the efficiency of the algorithm: they

concern the two geometries of Fig. 2, which represent the

basic discontinuities for modeling circular waveguide dual-
mode filtem. The dimensions reported in the figure cerption arc

taken from the actual design of a filter operating at about 12

GHz [9]. Running on the said workstation, the code found all

the modes of the waveguides of Fig. 2 with cutoff frequencies

up to 50 GHz and computed coupling coefficients with all the

modes of Q having cutoff frequencies up to 100 GHz, i.e., 169

TE and 144 TM modes. The computing time to evaluate the

mode spectrum of the “triseptum” circular waveguide of Fig.

2(a) was 14 s (45 T13 and 31 TM modes were found), and the

additional time to compute all the 18549 coupling coefficients
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TABLE III

COUPLING COEFFICIENTS AND CUTOFF WAVENUMBERS

(rN [MM–l ]) OF THE WAVEGUIDE OF FIG. 2(b)

TEno. 1 KC=0.18767

0.32817 (TEII.)

-0.37234 (TMII. )

–0.08490 (T1.331c)

0.16012 (TJ%2.)

0.17080 (TM31, )

TEno. 2 /se= O.21143 TEno.3scc=0.21309

–0.21687 (TE21.9) 0.31892 (TEII.)

–0.04556 (TEO1) 0.36469 (TMIIc)

–0.35523 (TM21c) 0.06829 (TE31e)

0.01688 (TE41, ) 0.20216 (TE12s)

–0.20726 (TEzz) 0.14110 (TM31.)

was 7 s. Table II reports the first few coupling coefficients: the

modes of S are ordered according to their cutoff wavenumbers,

and degenerate modes of Q are labeled with a “c” (cosine) or

“s” (sine) index. Thanks to the symmetry, the code ran even

faster in the case of Fig. 2(b). The mode spectrum, computed

in 9 s, consists of 9 TE modes. The additional time to compute

the coupling coefficients was only 1 s (in this case only 703

coefficients were actually computed, since the coefficients that

are zero by symmetry have been automatically skipped): Table

III shows the first nonzero coefficients of the first three modes.

IV. CONCLUSION

A fast and accurate algorithm has been presented for the de-

termination of the coupling coefficients between a rectangular

or circular waveguide connected to a smaller one of arbitrary

shape. The reported examples show that the accuracy is very

good, and that the computing time is moderate, even when

dealing with a large number of modes in the two waveguides.
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